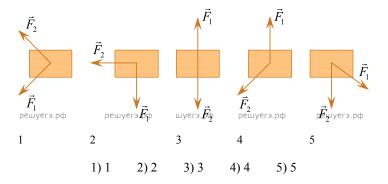
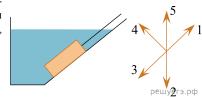
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

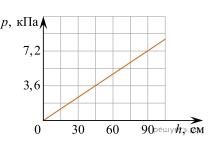
1. Абитуриент провел поиск информации в сети Интернет о наиболее мощных гидроэлектростанциях (ГЭС) в мире. Результаты поиска представлены в таблице.


№	Название ГЭС	Мощность
1	Гури	$10,3 \cdot 10^6 \mathrm{кВт}$
2	Три ущелья	22,4 ГВт
3	Итайпу	14 · 10 ⁹ Вт
4	Тукуруи	$8.3 \cdot 10^3 \mathrm{MBr}$
5	Черчилл – Фолс	5430 МВт

Самая мощная ГЭС указана в строке таблицы, номер которой:


- 1) 1 2) 2 3) 3 4) 4 5) 5
- **2.** Во время испытания автомобиля водитель держал постоянную скорость, модуль которой указывает стрелка спидометра, изображённого на рисунке. За промежуток времени $\Delta t = 18$ мин автомобиль проехал путь s, равный:

- 1) 16 км 2) 18 км 3) 20 км 4) 22 км 5) 24 км
- 3. Подъемный кран движется равномерно в горизонтальном направлении со скоростью, модуль которой относительно поверхности Земли $\upsilon=30$ см/с, и одновременно поднимает вертикально груз со скоростью, модуль которой относительно стрелы крана u=40 см/с. Модуль перемещения Δr груза относительно поверхности Земли за промежуток времени $\Delta t=0.5$ мин равен:
 - 1) 22 m 2) 20 m 3) 15 m 4) 12 m 5) 10 m
- **4.** К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение a тело приобретет в ситуации, обозначенной на рисунке цифрой:



5. Из водоема с помощью троса поднимают каменную плиту (см.рис.). Направление силы трения скольжения, действующей на плиту, показано стрелкой, обозначенной цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5

6. На рисунке изображён график зависимости гидростатического давления p от глубины h для p, к Πa жидкости, плотность р которой равна:

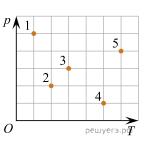
1) 1,2
$$\frac{\Gamma}{\text{cm}^3}$$

2) 1,1
$$\frac{\Gamma}{\text{CM}^3}$$

3) 1,0
$$\frac{\Gamma}{c_{\rm M}^3}$$

4) 0,90
$$\frac{\Gamma}{\text{cm}}$$

1)
$$1.2 \frac{\Gamma}{\text{CM}^3}$$
 2) $1.1 \frac{\Gamma}{\text{CM}^3}$ 3) $1.0 \frac{\Gamma}{\text{CM}^3}$ 4) $0.90 \frac{\Gamma}{\text{CM}^3}$ 5) $0.80 \frac{\Gamma}{\text{CM}^3}$


7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л
1	280	150	15,5
2	310	150	17,2
3	340	150	18,8
4	370	150	20,5
5	400	150	22,2

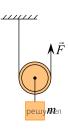
Такая закономерность характерна для процесса:

- 1) изохорного
- 2) адиабатного
 - 3) изотермического 5) шиклического
- 4) изобарного

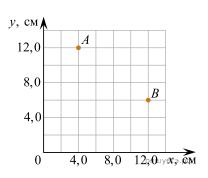
8. На *p-T* - диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшему давлению р газа, обозначено цифрой:

- 1) 1
- 2) 2

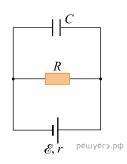
3)3


- 5)5

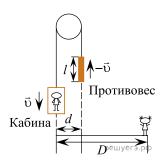
- 9. В баллоне вместимостью $V=0.037\ \mathrm{m}^3$ находится идеальный газ $M=2.0\ \frac{\Gamma}{\mathrm{МОЛЬ}}$ масса которого m=2.0 г. Если давление газа на стенки баллона p=73 кПа, то абсолютная температура T газа равно:
 - 1) 400 K
- 2) 380 K
- 3) 325 K
- 4) 290 K
- 5) 275 K
- 10. Физической величиной, измеряемой в ньютонах, является:
 - 1) напряжение
- 2) электрический заряд
- 3) магнитный поток
- 4) сила Лоренца 5) индуктивность
- 11. Тело, которое падало без начальной скорости $(v_0 = 0 \ \frac{M}{C})$ с некоторой высоты, за последние две секунды движения прошло путь s = 100 м. Высота h, с которой тело упало, равна ... м.
- **12.** На покоящуюся материальную точку O начинают действовать две силы \vec{F}_1 и \vec{F}_2 (см.рис.), причём модуль первой силы $F_1=2$ Н. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой F_2 равен ... **H**.



- 13. Трактор при вспашке горизонтального участка поля двигался равномерно со скоростью, модуль которой $\upsilon=3,6$ км/ч, и за промежуток времени $\varDelta t=1,4$ ч израсходовал топливо массой m = 15 кг (q = 42 МДж/кг). Если модуль силы тяги трактора F = 25 кH, то коэффициент полезного действия трактора η равен ... %.
- **14.** Два маленьких шарика массами $m_1 = 18$ г и $m_2 = 9.0$ г подвешены на невесомых нерастяжимых нитях одинаковой длины l так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол $\alpha = 60^{\circ}$, а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота, на которую они поднялись $h_{\rm max} = 8.0$ см, то длина l нити равна ... см.
- **15.** По трубе со средней скоростью $\langle v \rangle = 8.0$ м/с перекачивают идеальный газ (M = $58 \cdot 10^{-3}$ кг/моль), находящийся под давлением p = 393 кПа при температуре T = 295 К. Если газ массой m=50 кг проходит через поперечное сечение трубы за промежуток $\Delta t=7$ мин, то плошаль S поперечного сечения трубы равна ... cm^2 .
- **16.** Микроволновая печь потребляет электрическую мощность P = 1,5 кВт. Если коэффициент полезного действия печи $\eta=56\%$, то вода $(c=4,2\frac{\kappa \square \kappa}{\kappa \Gamma \cdot {}^{\circ}C})$ массой m=0,36 кг за промежуток времени $\Delta \tau = 54$ с, нагреется от температуры $t_1 = 18$ °C до температуры t_2 равной ... °C.


17. Груз массой m=9,0 кг равномерно поднимают с помощью подвижного блока (см. рис.). Если коэффициент полезного действия блока $\eta=75\%$, то модуль силы F, приложенной к свободному концу верёвки, равен ... H.

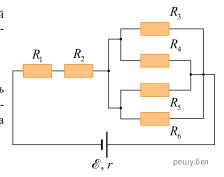
- **18.** На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H=1,9 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность $\alpha=45^{\circ}$, то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние l, равное ... дм.
- 19. Если точечный заряд q=6,00 нКл, находящийся в вакууме, помещен в точку A (см.рис.), то потенциал электростатического поля, созданного этим зарядом, в точке B равен ... В.



20. К источнику тока, внутреннее сопротивление которого r=2,0 Ом, подключён резистор сопротивлением R=16 Ом и конденсатор ёмкостью C=5,0 мкФ. Если при постоянной силе тока в резисторе заряд конденсатора $q=2,0\cdot 10^{-4}$ Кл, то ЭДС $\mathscr E$ источника тока равна ... В.

21. В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе $U_0=1.9\,$ В, а амплитудное значение силы тока в контуре $I_0=60\,$ мА. Если электроёмкость конденсатора $C=0.25\,$ мк Φ , то частота ν колебаний в контуре равна ... к Γ ц.

- **22.** На дифракционную решетку падает нормально параллельный пучок монохроматического света длиной волны $\lambda=625$ нм. Если максимум четвертого порядка отклонен от перпендикуляра к решетке на угол $\theta=30,0^\circ$, то каждый миллиметр решетки содержит число N штрихов, равное
- **23.** Маленький заряженный шарик массой m=4,0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1=q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r=30 см, то модуль заряда каждого шарика равен ... нКл.
- **24.** Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8,0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4,1 м, движущегося на расстоянии d=2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Кабина Ответ приведите а сантиметрах в секунду.

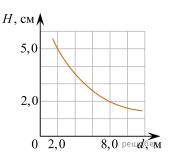

- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om.}$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


6/7

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6\ \frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}\ {\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4$ $\frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

